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Abstract

The 500 mb geopotential heights for both winter and summer from the FGGE IIIb
data have been analyzed for the existence of strange attractors. Five latitudes, 60"N,
30°N, 0°(EQ), 30°'S and 60°S, are selected for the present study. The correlation
dimension and the largest Lyapunov exponent are estimated to obtain geometrical
and dynamical characteristics of strange attractors. The correlation dimension provides
a lower bound of the number of independent variables necessary to model the
dynamics. The largest Lyapunov exponent provides the average exponential growth
rate of nearby trajectories on an attractor in an appropriate phase space, then this is
related to the predictability of the temporal development of the time series. The
inverse value of the exponent gives a mean predictability time scale. The correlation
dimension D, and the largest Lyapunov exponent A are estimated as follows:

29— 12and 4 x00lday " at EQ, D, ~x 6 —9 and A = 0.02 — 0.04day " at 30",
and D, x4 —6 and 4 > 0.04 —0.08day™" at 60°. These results show latitudinal and
seasonal change.

1. Introduction

Lorenz [1] reported that solutions of a set of three ordinary differential
equations modeling thermal convective motion of fluid layer, exhibit chaotic
behavior. After the work of Lorenz [1], especially in the last 10 years, chaotic
phenomenon has been discovered among many other fields, and theoretical

study has being developed.

In chaotic phenomena the temporal development of a trajectory is
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deterministic, but it is unstable and does not approach any periodic or
quasi-periodic states asymptotically. However, the trajectory is bounded on
an attractor, the so-called strange attractor which has a fractal structure.

Many methods to analyze chaotic behaviors have been developed.
Grassberger and Procaccia [2] introduced the correlation dimension as a useful
measure of strange attractors. The correlation dimension presents the
minimum number of essential variables to model the dynamics of the
system. The application to meteorological data has been developed, and
several numerical estimates suggested a low dimensional strange attractor in
a variety of systems [3, 4, 5, 6, 7, 8]. These estimates were obtained from a
data at a particular place. The purpose in the present paper is to understand
the chaotic features of the atmospheric motions globally. For this purpose
we use the First GARP (Global Atmospheric Research Program) Global
Experiment (FGGE) IIlb data set which provide the global atmospheric
data. The analyses in the present study are based on the time series of the
500mb geopotential height.

Strange attractors can be characterized by dimensions, Lyapunov
exponents, the Kolmogorov entropy, etc. [9]. In the present paper we estimate
the correlation dimension and the largest Lyapunov exponent. The correlation
dimension which obtained from the correlations between random points on
the attractor, characterizes the geometrical aspects of the strange attractor.
The largest Lyapunov exponent is the average rates of exponential divergence
or convergence of nearby orbits in phase space, that provides a quantitative
measure of predictability.

2. Calculation procedures

2.1 Correlation dimension

The geometrical aspect of strange attractors is characterized by generalized
dimensions D,, g >0 [10]. Generally D, > D, for any ¢'>g. The dimen-
sions provide estimates of the number of independent variables necessary to
describe the motion on the attractor. In this study we use the 2nd order
dimension D, which is called the correlation dimension. Grassberger and
Procaccia [2] have proposed the algorithms to extract the correlation
dimension from time series of a single variable. They have suggested that it
is useful to characterize experimental data, and D, is close to D, and D, in
most case.

When one study a system in m-dimensions, not all variables but a
single-variable time series are obtained in experimental situation. From a
time series embedded in large enough phase space we can reconstruct an
equivalent phase space of original system [11]. To generate an m-dimensional
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vector from a discrete one-dimensional time series {X ()}, we use time delayed
values of the time series [12]

X, ={X(), Xt+1), X(t+27),,X(t +(m— 1)}, (1)

where m is called the embedding dimension, 7 is an appropriate delay time. <
is sometimes chosen as the time when an autocorrelation function takes first
zero or a mutual information takes first minimum (Nevertheless, we adapt
t=1 in the present work because total number of data points is

(=

small). Points {X,} thus obtained would distribute randomly in m-dimensional
phase space, but lie on the attractor. The correlation integral C(r) is defined
by counting the number of pairs of points whose distance is smaller than the
prescribed threshold r. For limited data set with high autocorrelation, the
correlation integral displays an anomalous shoulder which inhibits good
estimate of dimension. Theiler [13] introduced a cutoff parameter o > 1 to
improve the convergence of standard correlation algorithm.

1 N N-n

C(")—_-ﬁ7 Z Z H{r = | Xpp5 — %)) (2)

I\ n=w i=1
where N is the total number of points in phase space, H is the Heaviside
function '

0, if x<0,
H(x)= i 3
) {1, if x>0. ©)

The shoulder in the correlation integral plot almost disappears for w = 500.
If C(r) grows with a power low as

C(I') | = rd(m), (4)

then the slope of the logarithm of the distribution, i.e., log C(r) versus logr,
leads to the dimension d(m)

d{log C(r)}

d{logr}

d(m) = (5)
For a deterministic system, d(m) should attain a saturated value as m

increases. This value is the correlation dimension. However, if d(m) does

not reach a saturation value for increasing m, then the system is random.

2.2 Largest Lyapunov exponent
The dynamics on the strange attractors can be characterized by the
Lyapunov exponents. The Lyapunov exponents are measure of exponential
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growth rates which relate to the time evolution of the distance between the
nearby trajectories in phase space. One or more positive Lyapunov exponent
implies the dynamics to be chaotic, and the magnitude of the exponent reflects
the time scale on which system dynamics become unpredictable. It is difficult
to determine the spectrum of Lyapunov exponents from experimental
data. We use the practical method to extract the largest Lyapunov exponent
from experimental data proposed by Sato et al. [14].

Consider two nearby points X, and ¥, on a time series {X,} defined by

(1). The time interval between X, and ¥, is greater than five days. If we
define distance |X, — ¥,| as dis (X,, ¥,), then the distance of the trajectories at
time ¢ + t can be written by dis(¥,,,, ¥,+.). The exponential growth rate of
the distance of the trajectories, i.e., the largest Lyapunov exponent A is given by

dis (X 40r Viad ~ e dis (X, F), (6)
thus we obtain A
1 dis (X405 Vesd)!
Ax) = — <log ek ,_,':,>, (7)
T dis (%,, V)

where (---) indicates average for all X,.

3. Application to the FGGE IIIb data

3.1 Data

We analyze the First GARP Global Experiment (FGGE) I1Ib data
produced at the Geophysical Fluid Dynamics Laboratory (GFDL). These
data have twice daily values from December, 1978 to November, 1979 in a
horizontal resolution of 1.875% in both latitude and longitude.

The 500 mb geopotential height at five latitudes (60°N, 30°N, 0°(EQ), 30°S
and 60°S) are employed as the time series. The 500mb geopotential height
may be inappropriate for analysis of equator, and insufficient in number
because the dynamical behaviors at the equator would be more complex than
these at the higher latitude. In any case the behavior represented by the
500mb geopotential height are analyzed to indicate its latitudinal change in
the present paper. The analyzed periods are Northern winter (December to
February) and Northern summer (June to August).

The FGGE IlIb data have 192 grid points along a latitude, we divide
them 16 groups, then each group has 12 grid points which have time series
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individually. A time series of a group is created by connecting twelve time
series to make a long one, it has 2160 values in Northern winter and 2208
values in Northern summer.

3.2 Correlation dimension

The correlation integral Cy(r) is calculated each 16 groups, and add
together, then the correlation dimension is estimated from slopes in a
log Zilfl Ci(r) versus log r diagram as calculated from (5). Fig. 1 shows slopes
versus log C(r) at 60°N, and the correlation dimension is obtained as the
saturation value over a plateau corresponding to the scaling region. The
correlation dimension D, we obtained for both Northern winter and Northern
summer are listed in Table 1.

SLOPE

-1.0 =10 -

5.0 -3.0
LOG C (R)
Fig. 1(a) Fig. 1 (b)

0 -3.0
LOG C(R)

Fig. 1. Slope versus log C(r) estimated from the time serics of the 500 mb geopotential height at
60 N. (a) winter, (b) summer. Embedding dimensions are m =2, 4,..., 30.

Table 1. Estimates of the correlation dimension D, from the
time series of the 500mb geopotential height. Season
is represented by that in northern hemisphere.

season 60"N 30°N 0 30°S 60°S

winter 46 ~5.2 ~70 94~98 ~88 ~46
summer 50~57 80~9.0 114~12 ~ 64 ~ 4.6

The correlation dimension D, tends to grow from higher latitude to lower
latitude. The next integer above the correlation dimension provides the
minimum number of independent variables necessary to model the dynamics.
Thus atmospheric motions are more complicated in lower latitude than in
higher latitude in this sense. This result seems appropriate because in middle
latitudes a set of equations can be simplified due to geostrophy, but not in
low latitudes. Seasonal variation of the estimates is small in 60° in both
hemispheres, while that in lower latitude seasonal variation is relatively clear
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in both hemispheres. The correlation dimension in summer is larger than that
in winter except at 60°S (there is no difference). Atmospheric motions are
more complicated in summer than in winter, and the effect of seasonal change
is larger in lower latitude than in higher latitude.

Fraedrich [4] showed that the attractor dimension in summer (x 3.9) is
larger than that in winter (=x 3.2) for daily surface pressure records at Berlin,
while he [5] obtained the correlation dimension 6.8 to 7.1 for the same time
series in winter. We do not know the reason of change of the dimension. The
estimates of fractal dimensions were about 8.0 using the daily 500 mb
geopotential height over western Europe in Keppenne and Nicolis [7]. Zeng
et al. [8] were not able to obtain saturated values for the correlation
dimensions from the daily surface temperature and pressure in the United
States and the North Atlantic Ocean, and concluded that the correlation
dimension was greater than 8. Estimated values in our study are relatively
low, and show small increase of dimension from winter to summer in 60°N.

3.3 Largest Lyapunov exponent

The largest Lyapunov exponent is calculated each 16 groups, and an
averaged value from them is estimated. The behavior of the largest Lyapunov
exponent versus evolution time with increasing embedding dimension are shown
in Fig. 2 as calculated from (7). In this calculation the largest Lyapunov
exponent decreases with increasing embedding dimension. We expect that the
embedding dimension around 2D, + 1 is appropriate for estimating the largest
Lyapunov exponent. This is successfully tested using finite time series from
the Lorenz system similar in size to the present study’s time series.

Table 2 shows the results in each latitude for both seasons. The inverse
value A~', multiplied by In 2 ~ 0.69, defines the error doubling time T. It
is regarded as a mean time scale of the predictability on the attractors.

s m =g |
B0t /’* w0 b /\
= = T T
i
/—/,__E //Q
/‘/——\
15 15

0'00 1 2 3 4 5 u.ou 1 2 3 T 5

TIME(days) TIME(days)

Fig. 2(a) Fig. 2 (b)

Fig. 2. The largest Lyapunov exponent A versus time estimated from the time series of the
500 mb geopotential height at 60°N. (a) winter, (b) summer. Embedding dimensions are
m=38,..., 15. The vertical bar indicates the fitted region.
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Table 2. Estimates of the largest Lyapunov exponent A. and its inverse A~ multiplied
p p p

by In 2. gives the predictability (error doubling) time T from the time series of

the 500mb geopotential height. Season is represented by that in northern

hemisphere.
season 60 N 30°'N 0 30°S 60 S
winter A(day™")  0.062 ~ 0.080 ~ 0.035 ~ 0013 0020 ~0.023 ~0.039
T (days) 8.7~ 11 ~ 20 ~ 353 30 ~ 35 ~ 18
summer  A(day”') 0.045 ~0.072  0.027 ~ 0.035 ~ 0.011 ~ 0.038 ~ 0.038
T (days) 9.6 ~ 15 20~ 26 ~ 63 ~ 18 ~ 18

The predictability time scale in higher latitude is shorter than that in
lower latitude except 60°S in summer, and the time scale in winter is shorter
than that in summer except 60°S. There is little latitudinal change in middle
latitudes of southern hemisphere in summer, and there is almost no seasonal
change at 60°S. These results may reflect the effect of topography to the
atmospheric motions.

The error doubling time is about a few days deduced from the general
circulation model [15, 16, 17], while study of analogues represented that the
error doubling time is about 8 days [18, 19]. Fraedrich [5] estimated the
error doubling time of about 9 days using daily surface pressure values at
Berlin for winter seasons. Using the 500 mb geopotential height over western
Europe, Keppenne and Nicolis [7] obtained the error doubling time of about
19 days. The estimates of the error doubling time are from about 2 to 8
days for several regions of the United States and the North Atlantic Ocean
[8]. Estimated error doubling time at 60°N in the present paper, which is
about 10 days, seems to be comparable.

4. Conclusions

The analyses for the existence of strange attractors are performed using
the time series of the 500 mb geopotential height of the FGGE IIIb data. Five
latitudes, 60 N. 30 N, 0 (EQ), 30°S and 60°S, are selected for the present study.
Period of the data set is winter and summer season. The correlation
dimension and the largest Lyapunov exponent are estimated to obtain
geometrical and dynamical characteristic of the atmospheric motions for each
latitude and season. The correlation dimension provides a lower bound of
the number of independent variables necessary to model the dynamics. The
largest Lyapunov exponent provides a dynamical measure of strange attractors
by estimating the mean rate of divergence of the distance between initially
neighboring trajectories. Its inverse value defines the mean predictable time
scale. The correlation dimension tends to grow from higher latitude to lower
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latitude, and the dimension in winter is smaller than that in summer. The
largest Lyapunov exponent decreases from higher latitude to lower latitude,
and the exponent in winter is larger than that in summer except at
60°S. Seasonal and latitudinal variation of these values seems to correspond
with the nature of general atmospheric motions.

Smith [20] presented that the number of points N,.i, required to estimate
the correlation dimension within 5% of its true values is N i, = 42™, where
m is the embedding dimension. The dimension D is obtained if m satisfies
m>2D + 1. This is severe limit. More weak limit was proposed that the
correlation dimension is necessary to be below 2log N, and claimed if the
estimated dimension is above or close to requirement, the estimate is spurious
[21, 22]. In this work some estimates especially at lower latitude may exceed
this requirement. Therefore these estimates should be interpreted with
care. Lorenz [23] suggested that the atmosphere is so complex, but the
estimated values of the dimension have seemed surprisingly low, this is regarded
that if the variable selected for analysis is strongly coupled to only a few
variables of the system, the estimated dimension will be considerably low. The
latitudinal and seasonal variation of the present analyses indicates the change
of the chaotic behaviors of the atmospheric motions represented by the 500 mb
geopotential height.

In the present paper, we used one observation time unit (0.5 days) as a
delay time of (1). If we take longer delay time, e.g., we investigated until
T = 6 (3 days), then the correlation dimension gives lower value, i.e., less than
or about 20 %.
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