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Abstract

In the present work, a fractal analysis is performed for 500mb geopotential height
obtained from FGGE III b data set. The fractal dimension evaluated in the present
work represents the dimension of the set of points (t, Z(t)), where t is time and Z(t)
is the geopotential height. Depending on the sampling time of the time series, the
fractal dimension D has a different value. When the sampling time k is less than
ki(x~3 days), D=13~15 As k, <k<k,(=30~40 days), D=x19. When
k> k,, D~ 16. These time scales indicate specifically the synoptic scale phenomena,
the planetary scale phenomena and the semiannual and the annual variabilities,
respectively. Moreover, the local dispersion is introduced and is applied to the
data. The results of the local dispersion analysis coincide with those of the fractal
dimension analysis. Although the fractal dimension evaluated in this work does not
directly represent the numbers of independent variables of dynamical system, the results
imply that the number of the independent variables that describe the atmospheric
phenomena has different value depending on the scale of interest.

1. Introduction

It can be considered that the number of independent variables that describe
atmospheric phenomena depends on a scale of interest, because dominant
terms of the atmospheric governing equations depend on the scale. In
addition, a fractal dimension of an attractor of a time series, e.g., the correlation
dimension, represents the number of independent variables of the system. Thus
we investigate what the scale dependence of the fractal dimensions of the
atmospheric attractor is.

* He went to his final rest in Aug. 1990.
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After the work of Nicolis and Nicolis [1], many works to estimate the
correlation dimension of the weather and the climate attractors have been
performed [2-6]. However, the existence of the low-dimensional weather and
climate attractors has been distrusted, recently. It has been pointed out that
there is the possibility of evaluating false low-dimension from less number of
data [7,8]. The relation between the number of data and the reliability of
evaluated correlation dimension is discussed by some authors [9-11].

In the present work, a fractal dimension of geometry of a time series is
evaluated, because the existence of low-dimensional weather and climate
attractors has been distrusted. The fractal dimension evaluated in the present
work represents the dimension of the set of points (t, Z(t)), where ¢ is time
and Z(t) is a physical quantity, e.g., the geopotential height. Thus the fractal
dimension does not represent the number of the independent variables.
Nevertheless, we infer that there exists a scale dependence in the variability
of time series, i.e., the scale dependence of the fractal dimension is introduced
and is evaluated in the preset work.

In the present work, the fractal dimensions of an annual time series of
500mb geopotential height, located at 60° and 30” of both the northern and
the southern latitudes and the equator, are evaluated. The data is obtained
from FGGE"® III b data sets (main III b produced by GFDL?). The interval
of the data is a half day.

Yano and Nishi [12] performed a fractal analysis for NOAA® OLR* data,
in order to see a clear scale separation in the variability of the tropical
atmosphere. The calculation method they used is one which measures the
change of variability as the period of averaging of data is changed. Moreover
the advantage of the method is to measure directly the change of the fractal
dimension depending on a time scale.

In the present work, the fractal dimension is evaluated by using a method
proposed by Higuchi [13]. The method has the advantage of which the
fractal dimension can accurately be evaluated even for small number of
data. We do not have much data, (the length of the data set is 730 for each
grid point), hence we use the method proposed by him. We must pay
attention to the interpretation of results, because Yano and Nishi [12] said
that the method was not sensitive to the presence of scale-separation. Thus
we introduce the local dispersion, that is similar to the method used by them.

! First Global atmospheric research programme Global Experiment.
2 Geophysical Fluid Dynamics Laboratory.

* National Oceanic and Atmospheric Administration.

Outgoing Long Wave Radiation.
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and apply it to the data.

The idea of the scale dependence of the fractal dimension is similar but
not to that of the multifractal [14]. The multifractal refers to the
non-uniformity of the attractor and to the existence of the intinite numbers
of fractal dimension. However, the scale dependence of the fractal dimension
of the attractor refers to that the different value of the fractal dimension is
evaluated if the extent of the coarse graining scale is changed.

2. Methods for data analyses

2.1 Fractal dimension

There are many methods to calculate the fractal dimension. In the present
work, we use a method proposed by Higuchi [13]. This is a modification
of Burlaga and Klein's method [15]. In the method, the fractal dimension
represents the dimension of the set of points (¢, Z(t)), where t is time and
Z(t) is a physical quantity, e.g., the geopotential height. Thus it is the
geometrical measure to classify the curve of (¢, Z(t)), quanitiatively. The
calculation method is described in the following.

A new time series X}

m

Xii=12,..., N} as follows,

is constructed from a given time series

»I‘- . s
X m> ‘Ym* ‘Ymi-lﬁ X m+2k>ee-» X (21)

m+ [N
where m represents the initial time, & is the sampling time and [---] denotes
the Gauss’ notation. Next the length L, (k) of the curve X% is defined as
follows,

m

w1 L[Cz1
\ Z |/\'m+i-k o /\’m+(i— 1)-k|) /I\ (22)

(
N — k-
Ii ,’,]-k 1
k

If the average of L, (k) over m, say L(k), satisfies the following relation. D is
called the fractal dimension:

Lm(k) =

L(I\) ~ l\'gD. (23)

If the time series has the character similar to the fractal Brownian motion,
its power spectrum obeys a power law:

Plw)~w™* (2.4)

and the exponent z is related to the fractal dimension D by
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S—u
L o
D - (2.5)

The method has an advantage that the fractal dimension can be accurately
evaluated even for small number of data. However, we must pay attention
to the interpretation of results, because Yano and Nishi [12] stated that the
method was not sensitive to the presence of the scale-separation.

2.2 Local dispersion
The local dispersion is introduced in this subsection. This is similar to
the fractal dimension used by Yano and Nishi [12].

A new time series M, ; is constructed from the running mean of a given
time series {X;;i=1,2,...} as follows:

1L—1

M ;=— Z Xivjs (2.6)
Lj:o

where L is the averaging time. Using this time series, local dispersion ¢, is
defined as follows:

o, =L(X; — ML.i)2> (2.7)

where {---)> denotes the average over the initial time i. It is convenient to
normalize ¢, by the ordinary dispersion ¢(=o,-,). Hereafter, the local
dispersion ¢, refers to one which is normalized by o.

If the time series {X;} have the ergodic property, o; can be related to
the autocorrelation coefficient ¢(7),

L—1 2 L=
O, = ‘T_EF] T $(7), (2.8)
where
X X4
Plr) = ———"~. 2.9
VT .

For continuous data X(¢), the running mean and the local dispersion o(L)
are similarly defined:

1 t+L
M(L;t)= Zj X (t)dt', (2.10)

a(L) = {(X(t) — M(L; 1))*>. (2.11)

If the time series are ergodic, the following relation holds:
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2 !
o(L)y=1— v;J T ¢(1)dr, (2.12)
L™ Jo

where ¢(L) has been also normalized by o(= a(x)).

Two simple examples of the local dispersion are given in the following.
For a random time series,

¢(t) = 0,0, (2.13)
we obtain

L=
=" (2.14)

Thus the local dispersion ¢, is concave for any L(L> 1).
As another example, for sinusoidal time series,
¢(t) = cos 1, (2.15)
we obtain

L>+2 2(LsinL L
e R s 16

If L is small enough to satisfy the following expansions,

. |
simLxL— —L°,
3!

1, 1. 4
cosLx~1— L "+ — L%,
21 4!

(2.16) becomes
Ll
(L) = ) + O(L%Y). (2.17)

Thus o(L) is convex for 0 < L« 1. Hence the average time at which o, (or
o(L)) has the inflection point corresponds to the time scale at which the
statistical regularity of time series changes.

The local dispersion is related to the correlation coefficient by (2.8) and
(2.12), and the correlation coefficient is related to the power spectrum through
the Fourier transformation. Moreover the slope of the power spectrum is
related to the fractal dimension D by (2.5). Thus the change of D may be
detected by the analysis of the local dispersion. The direct relationship
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between the change of D and o, (or o(L)) has not known yet. However in
this article it is inferred that the time at which o, (or o(L)) has inflection
point relates the time scale at which D changes its value.

3. Results and Discussion

3.1 Data

In the present work, the annual time series of S00mb geopotential height,
Z(t), obtained from FGGE III b data sets (main IIT b produced by GFDL),
are analyzed. The data set is constructed from the annually (from Dec. Ist,
1978 to Nov. 30th, 1979) observed meteorological elements on the grid points
with the longitudinal and the latitudinal resolution A4 x A4¢ = 1.875% x 1.875",
respectively. The time interval of the data is a half day. Thus there are 192
grid points on a latitudinal circle and the total number of data for each grid
point is 730.

3.2 The fractal dimension

We firstly show the results of the fractal dimension analyses. The lengths
L(k), mentioned is Sec. 2.1, are evaluated for each grid points on the latitudinal
circles of 60N, 30°N, 0°(EQ), 30°S and 60°S. The results are shown for the
value averaged over all grid points on each latitudinal circle, ie., zonally
averaged value.

Figure 1 show the relation between the sampling time k of newly
constructed time series X* and L(k) defined by (2.2). The slope of the curve
in the figure represents the value of the fractal dimension D. The fractal
dimension D changes its value at the sampling time k,(~ 3 days) except for
EQ. Moreover, it also changes at k,(= 30 ~ 40 days) for 60°N and 30°N.
The values of D and the sampling time at which D changes its value are
listed in Table I and Table II, respectively.

The phenomena with a longer period than 2k are included in the time
series provided that the sampling time of the time series is k. Hence the
synoptic scale phenomena may be realized in the time series which the sampling
time k < k,. Planetary scale flows may be realized in those with the sampling
time k, k, <k < k,, because the long term variabilities (oscillations having
periods longer than 10 days) are contained in the planetary modes [16, 17]. A
semiannual or an annual variability may be realized in those with the sampling
time k > k,.

The time series with sampling time k, k; < k < k,, are similar to a random
noise, because the fractal dimension of the time series in this sampling time
is nearly equal to that of a random noise, that has D = 2. Thus it implies
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Figure 1 The dependence of the length L(k),

defined by (2.2) and (2.3), on the
sampling time k for the variation of
500mb geopotential height Z(t) at
a) 60 N, b) EQ, C) 60'S. The time
k when the fractal dimension changes
and the fractal dimension D are
shown in the figure.
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Table I. The sampling time at which the frac- Table II. The values of the fractal dimension

D.

|

tal dimension changes its value. Unit } 60'N | 30°N EQ | 30°S | 60'S i
is days. E 1 E ;
T T T k< ky 1.34 | 1.56 | 143} 137
60N | 30N | EQ | 30 S ‘— ‘ :
—1 . <k<k,| 189| 189 | 188 188} 194
k, 312| 349 | 2761 251 F ‘ | . -
B ‘ , | ky <k 1.59 | 1.64 | i | !
ks, 393 ( 333 ‘1 | I I ]

that the phenomena are unpredictable in this time scale. This is supported
by the results of Egger and Schilling [17, 18]. They stated that planetary
scale flows, that contained the long term variability, were induced by the
stochastic forcing of the synoptic scale flows, hence the long term variabilities
were unpredictable.

The synoptic scale phenomena can be predicted in the frame work of the
baroclinic instability theory [19,20]. Moreover semiannual and annual
oscillations are predictable, because those synchronize with the sun. Thus the
phenomena realized in the time series with the sampling time k, k < k, and
k > k,, are predictable compared with those with k; <k < k,. The reasons
of the nonexistence of the time k, in the southern hemisphere are considered
later on.

For EQ, there does not exist any time scale as k; and k, within time
interval less than 90 days and we obtain D = 1.88, i.e., the graph of the time
series, (f, Z(t)), for EQ has a uniform fractal structure within time interval
less than 90 days.

3.2. local dispersion

The local dispersion ¢, introduced in Sec. 2.2, are evaluated at 60°N,
EQ and 60°S on 127.5°E, (see Fig. 2). Let the averaging time at which the
curvature of o, changes from convex to concave be L, and the averaging time
at which the curvature of ¢, changes from concave to convex be L,. At
60°N, 30°N, 30°S and 60°S, L, ~ 1 day and L, = 10 ~ 15 days. On the other
hand EQ, L, ~ 30 days and L, does not exist within less than 30 days, (L,
and L, are tabulated in Table III.). This inflection point of ¢, is equivalent
to the scale-separation time that Yano and Nishi [12] stated. Hence, L, and
L, correspond to k; and k,, respectively, and the sampling time at which D
changes its value may exist two, k; and k,, at 60°N, 30°N, 30°S and 60°S,
and 60°S, and one, k,, at EQ. The difference between the values of k; and
L, and those of k, and L, may come from their definitions: k is the sampling
time but L is the averaging time.

The curvature of ¢, is convex if an average time L is L< L, or
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c) 60°S on 127.5"E.
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Table ITI. The averaging time at which the
local dispersion o, of Z(t) has the
inflection point. Unit is days.

60N [30N | EQ |30 | 60°S |
Ly 175 | 1.25 125 | 0.75 |
L, 1525 | 14.75 | 32.75 | 12.25 | 11.751

L> L,. Thus the time series are statistically regular just as sinusoidal curve,
provided that the averaging time Lis L< L, or L> L,. On the other hand,
the curvature of o, is concave if Lis L, < L< L,. Thus the time series are
statistically irregular just as random noise, provided that L is L, < L< L.
These coincide with the results of fractal dimension analyses, stated in sec. 3.1.

Here, we consider the nonexistence of k, in the southern hemisphere and
the equator. We construct new time series M(L,;t) that are produced by
taking the running mean with an averaging time L, from Z(t), and
Z'(L,;t)(=Z(t)— M(L,;t)). The standard deviations of M(L,;t) and
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Z'(L,:t) are shown in Fig. 3. In the southern hemisphere and the equator
the standard deviations of M(L,; t) and Z'(L,; t) are nearly equal. We can
consider that M(L,; ) and Z'(L,; t) are the planetary scale variability and
the synoptic scale variability, respectively. Thus, figure 3 represents the
weakness of the activities of planetary scale waves in the southern hemisphere
and the equator. It is actually known that the activities of planetary scale
waves are weak in the southern hemisphere [21]. Thus the reason of the
nonexistence of k, in the southern hemisphere and the equator is reduced to
the weakness of the activities of planetary waves. Moreover, it is suggested
that the calculation method proposed by Higuchi [13] does not work
sensitively to extract the existence of the scale separation, as Yano and Nishi
[12] have stated.

300
UM(L2§ t)
s eZ'(Ly t)
= o
&8 2001
>
%
<
-
i 5
<
1 .
g ol 8 o e
~—
© o
[ ]
[ ]
]
0 S — . —r
-90 -60 -30 0 30 60 90
latitude
southern northern
hemisphere hemisphere

Figure 3 Dependence of the standard deviation of data M(L,:t) and
Z'(L,: 1) on each latitude, where M(L,:() is the time series
produced by running mecan with averaging time L, from Z(t),
and Z'(L,:t)=Z(t)— M(L,:1).

4. Concluding remarks

In the present work, a fractal analysis was performed for 500mb
geopotential height, located at 60°N, 30°N, 0°(EQ), 30°S and 60°S, obtained
from FGGE III b data set. The fractal dimension evaluated in the present
work was the one which has been proposed by Higuchi [13] and represents
the dimension of the set of points (t, Z(t)), where t is the time and Z(t) is
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the geopotential height. Depending on the sampling time of the time series,
the fractal dimension D takes different value. When the sampling time k was
less than k,(x 3 days), it took D = 1.3 ~ 1.5. As the sampling time k was
greater than- k; and less than k,(= 30~ 40 darys), D 19. When the
sampling time k was greater than k,, D = 1.6. These time scales indicated
specifically the synoptic scale phenomena, the planetary scale phenomena and
the semiannual and annual variability, respectively. Moreover, the local
dispersion, that was similar to the fractal dimension used by Yano and Nishi
[12], was introduced and was applied to the data. The results of the local
dispersion analysis were coincide with those of the fractal dimension analyses.

We can consider the fractal dimension D, evaluated in the present work,
as being the dimension of an attractor displayed in the 2-dimensional phase
space because D =2 for random noise: the dimension of the attractor in a
phase space for random noise is equal to the dimension of the phase space
where data are embedded. The fractal dimension evaluated in the present
work has a scale dependence. In this respect, we can also infer that a fractal
dimension of the attractor of Z(t) in the phase space would have a scale
dependence, as stated in section 1.
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