第2章 Fourier級数

Fourier 級数は,有限区間で定義された関数を,その定義区間の整数分の一を周期として持つ三角関数で展開したものである.Fourier 級数は物理学(地球惑星科学も含む)や工学で広く応用されていて,方程式の求解や解析の手段として頻繁に用いられる.

2.1 級数展開

与えられた関数を有限個もしくは無限個の既知の関数の和として表現することは級数展開と呼ばれる、級数展開は

- i) 関数の性質を調べる
- ii) 関数を近似する
- iii) 関数を具体的に計算する

というような手段を与えるので応用上きわめて重要である.

級数展開として , 現在までに習ったものとしては解析関数 f(x) に対する Taylor 展開がある:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{1}{n!}\frac{d^n f}{dx^n}(x-a)^a + \dots$$
 (2.1)

Note: Taylor 級数展開では展開の係数は展開される関数 f(x) の微分によって表現されている. したがって, Taylor 級数展開が可能であるためには, f(x) に連続性や微分可能性が要請される. また, Taylor 級数展開は展開の中心 x=a の近傍でのみ正しい表現である. しかしながら,後で見るように Foureir 級数はそのような連続性や微分可能性を仮定することなく,関数を展開することができるために Taylor 級数よりもはるかに広いクラスの関数に対して適用できる. さらに関数の定義域全体にわたって関数を級数表現できるのである.

2.2 周期関数

関数 f(x) が全ての x に対して, f(x+T)=f(x) であるならば, f(x) は T の周期をもつ, もしくは周期 T で周期的である , と呼ばれる . ここで T は正の定数である. 最小の T は最小周期 (the least period) もしくは, 単に f(x) の周期と呼ばれる.

例 1: 関数 $\sin x$ は, 2π , 4π , 6π , \cdots の周期をもつ. なぜならば, $\sin(x+2\pi)$, $\sin(x+4\pi)$, $\sin(x+6\pi)$, \cdots は全て $\sin x$ と同じ値を持つからである. しかしながら, 2π が $\sin x$ の (最小) 周期である.

例 2: $\sin nx$ もしくは $\cos nx$ の周期は $2\pi/n$ である. ここで, n は正の整数である.

 $\mathbf{M3}$: tan x の周期は, π である.

例4: 定数は任意の正の周期を持つ.

2.3 Fourier 級数

関数 f(x) は (-L,L) の範囲内で定義され、その領域の外側では f(x+2L)=f(x) とする. すなわち、 f(x) は 2L の周期をもつ. このとき f(x) は

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$
 (2.2)

と表現できる.これは f(x) の Fourier 級数もしくは Fourier 級数展開と呼ばれる.ここで Fourier 係数 $a_n,\ b_n$ は

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, \quad (n = 0, 1, 2 \cdots)$$
 (2.3)

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad (n = 1, 2 \cdots)$$
 (2.4)

で与えられる.

2.4 Fourier 係数の導出

(2.2) の両辺に $\cos \frac{m\pi x}{L}$ を乗じて,x について -L から L まで積分する.このとき $m\in\mathbb{N}$ に対して

$$\int_{-L}^{L} \cos \frac{m\pi x}{L} dx = \int_{-L}^{L} \sin \frac{m\pi x}{L} dx = 0, \qquad (2.5)$$

および, $m,n \in \mathbb{N}$ に対して

$$\int_{-L}^{L} \cos \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx = \int_{-L}^{L} \sin \frac{m\pi x}{L} \sin \frac{n\pi x}{L} dx = L\delta_{m,n}, \quad (2.6)$$

$$\int_{-L}^{L} \cos \frac{m\pi x}{L} \sin \frac{n\pi x}{L} \, \mathrm{d}x = 0. \tag{2.7}$$

ここで $\delta_{m,n}$ は Kronecker のデルタである。上記の関係式を用いると, a_m についての公式 (2.3) が得られる.同様にして,(2.2) の両辺に $\sin\frac{m\pi x}{L}$ を乗じて x について-L から L まで積分すると, b_m に関する公式 (2.4) が得られる.さらに,(2.2) の両辺を関数の定義域全体にわたって積分し,その結果を a_n の公式と見比べると, a_m は m=0 に対しても拡張できることがわかる.

2.5 Fourier 級数の例

以下の例で見るように, Fourier 級数を用いると無限級数の和を計算することができる.

例 1 f(x) = x, $(-\pi < x < \pi)$ Fourier 係数の公式より

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos \frac{n\pi x}{\pi} dx = 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin \frac{n\pi x}{\pi} dx = (-1)^{n+1} \frac{2}{n}.$$

したがって,

$$f(x) = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots\right).$$
 (2.8)

上式で $x = \pi/2$ とおけば,

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
(2.9)

という級数が得られる.この級数は Leibniz の級数,もしくは Euler の級数と呼ばれるものである.

例 2 $f(x) = |x|, (-\pi \le x \le \pi)$ 例 1 と同様にして

$$a_0=\pi,$$
 $a_n=egin{cases} 0, & n$ が偶数 $-rac{4}{\pi n^2}, & n$ が奇数 $b_n=0.$

したがって,

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right). \tag{2.10}$$

上式で x=0, または $x=\pi$ とおけば,

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots {2.11}$$

例 3 $f(x) = x^2, (-\pi \le x \le \pi)$ 例 1 と同様にして

$$a_0 = \frac{2}{3}\pi^2,$$

 $a_n = (-1)^n \frac{4}{n^2},$
 $b_n = 0.$

したがって,

$$f(x) = \frac{\pi^2}{3} - 4\left(\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \cdots\right). \tag{2.12}$$

上式で x=0 とおけば,

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$
 (2.13)

 $x = \pi \$ とおけば,

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots {2.14}$$

2.6 Fourier 級数展開に関するいくつかの注意

2.6.1 関数の定義域に関する注意

f(x) が c < x < c + 2L で定義され(ここで c は任意の実数である),2L の周期をもつとする.このような場合にも f(x) は (2.2) のように Fourier 級数展開できる.ただし,Fourier 係数 $a_n,\ b_n$ は

$$a_n = \frac{1}{L} \int_{c}^{c+2L} f(x) \cos \frac{n\pi x}{L} dx, \quad (n = 0, 1, 2 \cdots)$$
 (2.15)

$$b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx, \quad (n = 1, 2 \cdots)$$
 (2.16)

で与えられる.(2.15),(2.16) の証明は,(2.3),(2.4) を導出したのと同様に行える.(2.2) の両辺に $\cos\frac{n\pi x}{L}$ を掛け,その結果を x について c から c+2L まで積分し整理すると (2.15) が得られ, $\cos\frac{n\pi x}{L}$ の代わりに $\sin\frac{n\pi x}{L}$ を掛けて,同様の演算を行った場合には (2.16) が得られる.

c=-L の特別の場合には、(2.15)、(2.16) はそれぞれ (2.3)、(2.4) になる。もし $L=\pi$ ならば級数 (2.2) や係数 (2.3)、(2.4)、もしくは (2.15)、(2.16) は特に簡単になる。この場合に関数は周期 2π をもつ。

なお,関数の定義域が変わっても関数自身の形は変わらないので,その Fourier 級数展開も変わらないはずである.実際に,(2.15), (2.16) は変数変換と f(x) が周期 2L を持つという性質を利用して,(2.3), (2.4) に帰着させることができる.したがって,(2.2), (2.3), (2.4) が Fourier 級数展開の基本形と言えるであろう.

2.6.2 係数 a_0 について

(2.2) の定数項は

$$\frac{a_0}{2} = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{\int_{-L}^{L} f(x) dx}{\int_{-L}^{L} dx}$$

に等しく、これは f(x) の周期にわたる平均である。このことは積分を区分求積法に直すとすぐにわかる。

2.6.3 関数が不連続点を持つ場合

係数 (2.3), (2.4) をもつ級数 (2.2) は x_d が不連続点のときには

$$\frac{f(x_{\rm d}+0)+f(x_{\rm d}-0)}{2}$$

に収束する.

2.7 Parseval の恒等式

もし, a_n, b_n が関数 f(x) の Fourier 係数のとき,

$$\frac{1}{L} \int_{-L}^{L} \{f(x)\}^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$
 (2.17)

が成り立つ。これは Parseval の恒等式と呼ばれる。この式は f(x) の二乗平均値が Foureir 係数の二乗和として表現できることを示している。

2.8 Fourier 級数の収束性

先に導入した Fourier 級数 (2.2) はより厳密には、

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$
 (2.18)

と書き表すべきである.等号の記号を用いないで記号 \sim を用いて両辺を結んだのは,(2.18)の右辺の三角関数の級数が左辺の f(x) に対応することを表すためである.級数の収束に関する各種の条件が満たされるときに初めて等号で結ぶことが出来る.ここでは Foureir 級数展開の収束性について,数学的な議論を紹介する.まず言葉の定義を与えておく.

区分的に連続な関数: 次の条件を満足するときに,有限区間 $I=\{x\in\mathbb{R}|a<x<b\}$ で定義された関数 f(x) は区分的に連続であると呼ばれる.

- i) f(x) が I で有限個の点 x_1, x_2, \dots, x_k をのぞいて連続
- ii) 各不連続点 $x_1, x_2, \cdots x_k$ で

$$f(x_i + 0) = \lim_{t \to +0} f(x_i + t), \ f(x_i - 0) = \lim_{t \to -0} f(x_i + t)$$
 (2.19)

が存在.

17

iii) *I* の左右両端点 *a*, *b* で

$$f(a+0) = \lim_{t \to +0} f(a+t), \ f(b-0) = \lim_{t \to +0} f(b-t)$$
 (2.20)

が存在.

定理: 関数 f(x) は周期 2L を持つ周期関数で,区分的に連続であるとする.さらに f'(x) も区分的に連続であるとする.このとき f(x) の Fourier 級数は

- f(x) が連続な点で,f(x) に収束し
- ullet f(x) が不連続な点では $rac{1}{2}\left\{f(x+0)+f(x-0)
 ight\}$ に収束する .

上記定理を証明するための方法について述べておく. なお , 関数 f(x) は周期が 2π であるとする . 2π 以外の周期をもつ関数についても同様に証明できる .

準備1:

$$\frac{1}{2} + \cos t + \cos 2t + \dots + \cos mt = \frac{\sin(m + \frac{1}{2})t}{2\sin\frac{1}{2}t}$$
 (2.21)

を証明する.

準備2:(2.21)を用いて,

$$\frac{1}{\pi} \int_0^{\pi} \frac{\sin(m + \frac{1}{2})t}{2\sin\frac{1}{2}t} dt = \frac{1}{2},$$
(2.22)

$$\frac{1}{\pi} \int_{-\pi}^{0} \frac{\sin(m + \frac{1}{2})t}{2\sin\frac{1}{2}t} dt = \frac{1}{2},$$
(2.23)

を証明する.

準備3: 定理を満足する関数 f(x) について

$$\frac{a_0^2}{2} + \sum_{n=1}^{m} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} [f(x)]^2 dx$$
 (2.24)

を証明する.

準備 $\mathbf{4}$: (2.24) を利用すると,定理を満足する関数 f(x) について

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin nx \, \mathrm{d}x = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos nx \, \mathrm{d}x = 0 \tag{2.25}$$

が証明できる.

準備 5: さらに (2.25) を利用すると,定理を満足する関数 f(x) について

$$\lim_{m \to \infty} \int_{-\pi}^{\pi} f(x) \sin\left(m + \frac{1}{2}\right) x \, \mathrm{d}x = 0 \tag{2.26}$$

が証明できる.

準備 $\mathbf{6}$: f(x) が周期 2π を持ち,定理の条件を満足すれば,f(x) の Fourier 級数の部分和

$$S_m(x) = \frac{a_0}{2} + \sum_{n=1}^{m} (a_n \cos nx + b_n \sin nx)$$
 (2.27)

は

$$S_m(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) \frac{\sin\left(m + \frac{1}{2}\right)t}{2\sin\frac{1}{2}t} dt$$
 (2.28)

となることが示せる。

定理の証明 (step 1):

$$S_{m}(x) - \left(\frac{f(x+0) + f(x-0)}{2}\right) = \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(t+x) - f(x-0)}{2\sin\frac{1}{2}t} \sin(m+\frac{1}{2})t \,dt + \frac{1}{\pi} \int_{0}^{\pi} \frac{f(t+x) - f(x+0)}{2\sin\frac{1}{2}t} \sin(m+\frac{1}{2})t \,dt$$

$$(2.29)$$

を示す.

定理の証明 (step 2): (2.26) を用いて

$$\lim_{m \to \infty} \frac{1}{\pi} \int_{-\pi}^{0} \frac{f(t+x) - f(x-0)}{2\sin\frac{1}{2}t} \sin(m+\frac{1}{2})t \, dt = 0, \qquad (2.30)$$

$$\lim_{m \to \infty} \frac{1}{\pi} \int_0^{\pi} \frac{f(t+x) - f(x+0)}{2\sin\frac{1}{2}t} \sin(m+\frac{1}{2})t \, dt = 0$$
 (2.31)

を示す.これらと (2.29) より定理が証明される.

2.9 Fourier 級数の複素表現 (複素 Fourier 級数展開)

Euler の恒等式

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2.32}$$

を使うと、周期 2L の関数 f(x) の Fourier 級数はもっと簡潔に書き下すことができる. (2.32) より

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2},$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i},$$
(2.33)

である. (2.2) の cosine, sine を Euler の関係式を用いて表せば,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \frac{e^{in\pi x/L} + e^{-in\pi x/L}}{2} + b_n \frac{e^{in\pi x/L} - e^{-in\pi x/L}}{2i} \right\}$$
$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ \frac{a_n - ib_n}{2} e^{in\pi x/L} + \frac{a_n + ib_n}{2} e^{-in\pi x/L} \right\}$$
(2.34)

ここで, $c_n=(a_n-ib_n)/2, (n\neq 0)$ と定義する. $(2.3),\,(2.4)$ を用いると

$$c_{n} = \frac{1}{2L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx - \frac{i}{2L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx,$$

$$= \frac{1}{2L} \int_{-L}^{L} f(x) \left(\cos \frac{n\pi x}{L} - i \sin \frac{n\pi x}{L} \right) dx,$$

$$= \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi/L} dx. \qquad (2.35)$$

また(2.35)を用いると、

$$\frac{a_0}{2} = c_0 \tag{2.36}$$

と表現できる. したがって, (2.34) は

$$f(x) = \sum_{n = -\infty}^{n = \infty} c_n e^{in\pi x/L},$$
(2.37)

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-in\pi x/L} dx,$$
 (2.38)

と書ける. (2.37) を複素 Fourier 級数展開もしくは Fourier 級数展開の複素表示と呼び, c_n は複素 Fourier 係数と呼ばれる.なお,f(x) は実数関数であったので, $c_n^*=c_{-n}$ であることに注意せよ.ここで,* は複素共役を表す. 1

Note 1: 周期関数 f(x) が連続で、しかも f'(x) も連続であって、さらに f''(x) が区分的に連続であれば、f'(x) の Foureir 級数は f(x) の Foureir 級数を項別に微分して得ることができる。f'(x) したがって、このように Foureir 級数を Euler の関係式を用いて複素表示しておくと、Fourier 級数展開した f(x) の微分や積分が容易に行うことができるようになる。f'(x) (cosine や sine の微分・積分よりも指数関数の微分・積分のほうがはるかに楽であることを思い起こせばよい。)

Note 2: 複素 Fourier 係数 c_n を用いると, Parseval の恒等式は,

$$\frac{1}{2L} \int_{-L}^{L} f(x)^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$$
 (2.39)

と表せる.

Note 3: $c_n = c_{-n}^*$ は、複素 Fourier 級数の導出の過程で得られたものであるが、以下で見るように f(x) が実であるための条件とみなせる .(2.37) で両辺の複素共役を取ると、

l.h.s. =
$$f(x)^* = f(x)$$
,
r.h.s. = $\sum_{n=-\infty}^{\infty} c_n^* e^{-in\pi x/L}$.

n の符号を入れ替えると、

r.h.s.
$$= \sum_{n=-\infty}^{\infty} c_{-n}^* e^{in\pi x/L}.$$

したがって.

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L},$$
$$= \sum_{n=-\infty}^{\infty} c_{-n}^* e^{in\pi x/L}.$$

¹i は純虚数 $i=\sqrt[V]{-1}$ である. これは万国共通の記号と思っていたが, 数年前に電気工学の分野では純虚数は j で表すらしいことを知った. 電気工学では i は交流電流に用いられる記号 (直流電流は I) で, それと混同しないように j を用いるらしい.

²この定理の証明は省略する.

21

つまり

$$c_n = c_{-n}^* (2.40)$$

が導かれる.

Note 4: 今までは周期 2L を持つ実数関数の Fourier 級数展開を考えてきたが , 周期 2L を持つ 2 つの実数関数 $f_1(x), f_2(x)$ から作られる複素数値をとる関数

$$f(x) = f_1(x) + if_2(x) (2.41)$$

も Fourier 級数展開や複素 Fourier 級数展開することができる $.f_1, f_2$ が以下 のように Fourier 級数表示されるものとする:

$$f_1(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \left\{ \alpha_n \cos \frac{n\pi x}{L} + \beta_n \sin \frac{n\pi x}{L} \right\}, \qquad (2.42)$$

$$f_2(x) = \frac{\gamma_0}{2} + \sum_{n=1}^{\infty} \left\{ \gamma_n \cos \frac{n\pi x}{L} + \delta_n \sin \frac{n\pi x}{L} \right\}. \tag{2.43}$$

ここで,

$$\alpha_n = \frac{1}{L} \int_{-L}^{L} f_1(x) \cos \frac{n\pi x}{L} dx, \qquad (2.44)$$

$$\beta_n = \frac{1}{L} \int_{-L}^{L} f_1(x) \sin \frac{n\pi x}{L} dx, \qquad (2.45)$$

$$\gamma_n = \frac{1}{L} \int_{-L}^{L} f_2(x) \cos \frac{n\pi x}{L} dx, \qquad (2.46)$$

$$\delta_n = \frac{1}{L} \int_{-L}^{L} f_2(x) \sin \frac{n\pi x}{L} dx, \qquad (2.47)$$

である .(2.41) の定義から f(x) の Fourier 級数表示は

$$f(x) = \frac{\alpha_0 + i\gamma_0}{2} + \sum_{n=1}^{\infty} \left\{ (\alpha_n + i\gamma_n) \cos \frac{n\pi x}{L} + (\beta_n + i\delta_n) \sin \frac{n\pi x}{L} \right\}$$
(2.48)

となるが,係数 $lpha_n + i \gamma_n, \, eta_n + i \delta_n$ を改めて $a_n, \, b_n$ と記せば,

$$f(x) = \frac{a}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right\}$$
 (2.49)

とおくと, a_n , b_n は $(2.44) \sim (2.47)$ と (2.41) を使って

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, \qquad (2.50)$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \qquad (2.51)$$

と書ける. さらに Euler の関係式を用いれば (2.49) は

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{n\pi x/L}$$
 (2.52)

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-in\pi x/L} dx$$
 (2.53)

とも書くことができる. これらの議論は,実部,虚部が周期 2L の実関数で作られる複素数値をもつ関数の場合でも,今まで議論してきた Fourier 級数や複素 Fourier 級数の表式はそのまま当てはまる. なお Parseval の恒等式は

$$\frac{1}{L} \int_{-L}^{L} |f(x)|^2 dx = \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$
 (2.54)

$$\frac{1}{2L} \int_{-L}^{L} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$$
 (2.55)

である.したがって,(2.17) と (2.39) をそれぞれ (2.54) や (2.55) のように表現しておけば,その公式は f(x) が複素数関数や実数関数の場合でも適用できる.

例 $f(x) = x^2, (-\pi \le x \le \pi)$

2.6 節の例3を複 Fourier 級数で表現(計算)してみる. Fourier 係数は、

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} dx$$

$$= \begin{cases} (-1)^n \frac{2}{n^2}, & (n \neq 0), \\ \frac{\pi^2}{3}, & n = 0. \end{cases}$$
(2.56)

したがって,

$$x^{2} = \cdots - \frac{2}{3^{2}}e^{-3ix} + \frac{2}{2^{2}}e^{-2ix} - \frac{2}{1^{2}}e^{-ix} + \frac{\pi^{2}}{3} - \frac{2}{1^{2}}e^{ix} + \frac{2}{2^{2}}e^{2ix} - \frac{2}{3^{2}}e^{3ix} + \cdots$$

$$= \frac{\pi^{2}}{3} - 4\left(\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{2}} + \cdots\right). \tag{2.57}$$